Adaptive Kernel Principal Component Analysis (KPCA) for Monitoring Small Disturbances of Nonlinear Processes
نویسندگان
چکیده
The Tennessee Eastman (TE) process, created by Eastman Chemical Company, is a complex nonlinear process. Many previous studies focus on the detectability of monitoring a multivariate process by using TE process as an example. Principal component analysis (PCA) is a widely used dimension-reduction tool for monitoring multivariate linear process. Recently, the kernel principal component analysis (KPCA) has emerged as an effective method to tackling the problem of nonlinear data. Nevertheless, the conventional KPCA used the sum of squares of latest observations as the monitoring statistics and hence failed to detect small disturbance of the process. To enhance the detectability of the KPCA-based monitoring method, an adaptive KPCAbased monitoring statistic is proposed in this paper. The basic idea of the proposed method is first adopting the multivariate exponentially moving average to predict the process mean shifts and then combining the estimated mean shifts with the extracted components by KPCA to construct the adaptive monitoring statistic. The efficiency of the proposed monitoring scheme is implemented in a simulated nonlinear system and in the TE process. The experimental results indicate that the proposed method outperforms the traditional PCA and KPCA monitoring schemes.
منابع مشابه
Improved multi-scale kernel principal component analysis and its application for fault detection
In this paper the multiscale kernel principal component analysis (MSKPCA) based on sliding median filter (SFM) is proposed for fault detection in nonlinear system with outliers. The MSKPCA based on SFM (SFM-MSKPCA) algorithm is first proposed and applied to process monitoring. The advantages of SFM-MSKPCA are: (1) the dynamical multiscale monitoring method is proposed which combining the Kronec...
متن کاملMultivariate Statistical Monitoring of Nonlinear Biological Processes Using Kernel Pca
In this paper, a new nonlinear process monitoring technique based upon kernel principal component analysis (KPCA) is developed. In recent years, KPCA has been emerging to tackle the nonlinear monitoring problem. KPCA can efficiently compute principal components in high dimensional feature spaces by the use of integral operator and nonlinear kernel functions. The basic idea of KPCA is to first m...
متن کاملFault Detection of Nonlinear Processes Using Fuzzy C - means - based Kernel PCA
Nonlinearity in industrial processes such as chemical and biological processes is still a significant problem. Kernel principal component analysis (KPCA) has recently proven to be a powerful tool for monitoring nonlinear processes with numerous mutually correlated measured variables. One of the drawbacks of original KPCA is that computation time increases with the number of samples. In this art...
متن کاملMultivariate Statistical Kernel PCA for Nonlinear Process Fault Diagnosis in Military Barracks
Because of the nonlinear characteristics of monitoring system in military barracks, the traditional KPCA method either have low sensitivity or unable to detect the fault quickly and accurately. In order to make use of higher-order statistics to get more useful information and meet the requirements of real-time fault diagnosis and sensitivity, a new method of fault detection and diagnosis is pro...
متن کاملAnalog Circuit Intelligent Fault Diagnosis Based on Greedy Kpca and One-against-rest Svm Approach
Fault diagnosis of analog circuits is essential for guaranteeing the reliability and maintainability of electronic systems. A novel analog circuit fault diagnosis approach based on greedy kernel principal component analysis (KPCA) and one-against-rest support vector machine (OARSVM) is proposed in this paper. In order to obtain a successful fault classifier, eliminating noise and extracting fau...
متن کامل